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Abstract: An experiment was conducted to develop algorithms for online terrains classification by 
robots used in agricultural environments. An instrumented agricultural tractor robotic platform was 
used to collect data from four different terrains; concrete, dense grass, sparse grass, and firm soil. 
The data collected were hand-labeled, segmented, and transformed from a time domain to 
frequency domain using fast furrier transform (FFT). The feature dimension of the transformed data 
was reduced using principal component analysis (PCA), and the principal components that account 
for 95% of the total variation in the feature data were selected. The selected features were used to 
train decision tree and linear discriminant analysis classifiers. From the result, the linear 
discriminant analysis performed better than the decision tree, and PCA improved the speed and 
accuracy of the online classification and offline training.  

1. Introduction 
In recent years, electric vehicle technologies have become one of the most important fields of 

research and investment for automotive companies and this leading to the development of various 
types of electric and hybrid electric vehicles [1]. Intelligent agricultural tractors that are powered by 
electric energy are the typical example of such development in electric vehicles. Because the 
working environment of agricultural tractors is rough and complex, making them terrain adaptive 
significantly improve their performances. Modifying vehicle control algorithms to take into account 
the terrain types is greatly improving the performance of traction control, stability control, collision 
warning, cruise control, and adaptive anti-skid steering [2]. For instance, when driving on wet 
asphalt, the maximum turning speed should be lower than the one used when driving on dry asphalt; 
also to reduce excessive wheel slip, acceleration has to be reduced in soft terrain. By incorporating 
terrain adaptive driving rules on the vehicle's control system, the general performance will improve, 
power consumptions will reduce, and the vehicle can be prevented from immobilization in poor 
terrains [2, 3]. The development of technologies that enable vehicles to travel longer distances with 
limited human supervision in a highly challenging environment is among the main thrust of 
researches in robot mobility. This study aims to develop machine learning-based algorithms for 
online classification of terrains during robotic vehicle operations and to evaluate the performance of 
the algorithms in selected terrains. 

In the past, terrain identification mainly focused on path planning and obstacle detection using 
vision and range data [4-6]. However, obstacle detection does not identify terrain types or address 
the issue of terrain being a potential risk factor, while vision-based terrain classification method 
does not identify the underlying terrain types, and the underlying terrains have more effect on 
vehicle mobility. To address the problems of terrain classification, vibration method was suggested 
by Iagnemma and Dubowsky in [7]. The suggested method was demonstrated on a slow-moving 
robot by Sadhukhan et al. [8]. The vibration signal from slow-moving robot was transformed to the 
frequency domain using FFT and the feature dimension of the transformed signal was reduced using 
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PCA. Finally, linear discriminant analysis (LDA) was applied to classify the terrains into various 
types. Vibration signal was also applied to classified terrain in [9-12], however, the major problems 
of vibration-based method are that; it does not detect grass-covered terrain, and at low speed, its 
performance is poor. Acoustic features were also applied in terrain classification. Sound from 
vehicle-terrain interactions was used to classify grass, pavement, gravel, carpet, and sand using 
deep convolutional neural network [13, 14]; the system is robust to Gaussian white noise. However, 
acoustic methods suffered from the problem of noise interference from the machine parts and other 
sources. Features calculated from wheel slip, wheel torque, and wheel vertical force were employed 
to characterize asphalt, dirt road, plowed terrain, and beach sand [15]. Conventional sensors that 
include wheel encoders, electrical current ammeter, and yaw rate gyroscope were used in the study; 
the system was able to characterize terrain online during normal vehicle operations.  

In this study, rolling resistance which is a measure of total resistance offered by terrain to a 
traversing vehicle was used to classify terrains, this is due to the consideration that different terrain 
gives different levels and types of resistance to vehicle movement, and the rolling resistance can be 
easily computed from the measurement of wheel torque and vertical load. The structure of the 
remaining part of the paper is as follows: In the second section, the experimental procedure that 
includes data collection, feature transformation and reduction, and offline training was discussed. 
The third section describes and discusses the experimental result, while the fourth section gives the 
conclusion. 

2. Experimental Procedure 
2.1 Data Collection 

Experiments were conducted to collect instantaneous torque data using an autonomous 
agricultural tractor experimental platform shown in figure 1. The platform is a 4-in-wheel motor 
drive electric tractor; it is equipped with programmable logic controllers (PLC) for control, sensors 
for measuring wheel torque, wheel vertical force, wheel rotational speed, and a GPS device for 
measuring the vehicle velocity.  

 

Figure 1: (a) Robotic tractor in sparse grass (b) laptop for storing data 
The location of the experiment was the machinery testing strip of Nanjing agricultural university 

workshop; the robotic platform was manually piloted around the field using a remote. The machine 
was droved through concrete, firm soil, soft soil, and sparse grass surfaces at a speed of around 0.8 
to 1.0 m/s. Instantaneous wheel torque data at a sampling frequency of 120 Hz were collected and 
stored in a laptop computer mounted on the system. 
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2.2 Wheel rolling resistance 
The driving torque, Tr that needs to be applied to overcome the wheel rolling resistance moment 

is defined as:  
𝑇𝑇𝑟𝑟 = 𝑓𝑓𝑟𝑟 ∗ 𝑟𝑟 ∗ 𝐹𝐹𝑧𝑧                                                                (1) 

𝑓𝑓𝑟𝑟, coefficient of rolling resistance of the wheels in the longitudinal direction; 𝐹𝐹𝑧𝑧, the vertical load 
acting on the wheel; and r, the wheel radius.  

The torque developed by the wheel is estimated by measuring the electrical current drawn by the 
wheel drive motor [16, 17]. It is known that in DC brushed motors, the electrical current, I, is 
roughly proportional to the delivered mechanical torque Tr [18]. 

𝑇𝑇𝑟𝑟 = 𝜏𝜏 ∗ 𝑘𝑘𝑡𝑡 ∗ 𝐼𝐼                                                                            (2) 
𝑘𝑘𝑡𝑡, the motor torque constant and τ, the gearhead ratio. 

By measuring wheel vertical load and the motor current during straight driving at a constant speed, 
it will be possible to get an indirect estimate of the motion resistance, given the wheel geometry and 
the motor torque constant. 

2.3 Feature Extraction and Reduction 
The original signals were split into a set of segments of length 1 second, for uniformity, 235 

segments from each class of data were selected. 128 point FFT of the signals segments were 
computed, and the absolute value of the FFT coefficients selected [19]. To speed up the training and 
classification process, the redundant features were eliminated using PCA and the principal 
components that account for 95% of the variation in the feature vector were selected for further 
processing. 

2.4 Offline Training of Classifier 
1) Linear discriminant analysis 
Linear discriminant analysis (LDA) is a supervised machine learning algorithm for feature 

classification [20, 21]. LDA provides class boundaries by drawing decision areas between different 
classes and it is appropriate for multi-class classification. LDA tries to maximize the ratio of the 
variance between and within classes. Given a set of training data represented by their feature vectors, 
for each class of 𝑣𝑣𝑖𝑖, the centroid 𝑐𝑐𝑐𝑐 and the covariance matrix 𝑐𝑐𝑣𝑣𝑖𝑖 are calculated by assuming that all 
the class labels are represented equally in the training data. When each of the training instances is 
tried to be classified into each of the specified class, a within-class scatter matrix 𝑆𝑆𝑚𝑚 will be obtained. 

𝑆𝑆𝑚𝑚 = �𝑐𝑐𝑣𝑣𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                                            (3) 

The center of the whole dataset μ is first calculated to obtain the between-class scatter matrix. Let 
D be a matrix keeping the distance between centers of classes and the center of the whole data set, 

𝐷𝐷 =  [𝜇𝜇1 − 𝜇𝜇, 𝜇𝜇2 − 𝜇𝜇… …  ，𝜇𝜇5 − 𝜇𝜇]                               (4) 
So the between-class scatter matrix is 

𝑆𝑆𝑛𝑛 =
1
𝑛𝑛
𝐷𝐷𝐷𝐷𝑇𝑇                                                   (5) 

The aim is to maximize the ratio of between and within classes' variance 

max 𝑗𝑗(𝑤𝑤) =
𝑤𝑤𝑇𝑇𝑆𝑆𝑛𝑛𝑤𝑤
𝑤𝑤𝑇𝑇𝑆𝑆𝑚𝑚𝑤𝑤

                                             (6) 

2) Decision Tree 
Decision tree (DT) is a capable machine learning tool used to solve both classification and 

regression problems. Unlike other classification methods that use a set of features to jointly perform 
classification in a single decision step, decision tree is based on multi-level or hierarchical decision 
schemes of a tree-like structure as illustrated in figure 4 [22]. The tree consists of a root node, a set of 
internal nodes (split), and a set of terminal nodes (leaves). Each node of the decision tree structure 
makes a binary decision of separating one class or some of the classes from the rest. Processing is 
usually performed by moving the tree down until it reaches the leaf node, this is known as the top-
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down approach; other approaches are bottom-up and the hybrid [23]. In comparison to other methods, 
DT has the advantages of the ability to process the data measured on different scales, and it is not 
based on any assumed frequency distribution. In the decision tree, the features with the highest 
information are automatically selected for classification, and the remaining features are rejected, 
thereby improving the efficiency of computation. To overcome the problems of overfitting in DT, a 
pruning process is usually employed using the validation data sets and a user-specified cost 
complexity factor. 

 

Figure 2: Diagram illustrating a decision tree 
In this study, decision tree and linear discriminant analysis were trained to classify the data, the 

performance of each classifier was tested, and its prediction accuracy determined and compared. 
Before training and testing, the data was divide into training and testing set, 70% of the data was 
assigned for training, and 30% was set for testing. The following data processing and training were 
conducted. 

• Feature transformation by FFT and training by DT. The method is named DTM. 
• Feature transformation by FFT, Feature reduction by PCA, and training by DT. The method 

is named DTM-Plus. 
• Feature transformation by FFT and training by LDA. The method is named LDM. 
• Feature transformation by FFT, Feature reduction by PCA, and training by LDA. The method 

is named LDM-Plus. 
Using Matlab 2019a programming environment, algorithms for linear discriminant analysis and 

decision trees were developed and trained, wheel rolling resistances was used as input data, the 
terrain type as the class variables. The algorithms were developed to optimize the training process 
for optimum classifiers automatically.   

The trained DTM, DTM-Plus, LDM, and LDM-Plus were used to classify a single instance of 
data. As shown in Table 1, the online classification is relatively faster than the offline training. The 
specifications of the PC used during the experiment are windows 10 operating system, 2.1 GHz 
processor, 8 GB ram, and 256 GB SSD. 

Table 1: time taken for training and online classification 
Method Training 

time 
(seconds) 

Online 
classification 

time 
(milliseconds) 

DTM 16.1536 1.7113 
DTM - 

Plus 
14.3797 3.2217 

LDM 18.9124 41.7546 
LDM - 

Plus 
17.8458 2.8459 
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3. Experimental result and discussion 
The performances of the trained classifiers were validated using the testing data set. The result is 

presented in figure 3; for DTM, the precision and recall value range from 85.7 -100% and 84.4 -
98.6% respectively, while for DTM-Plus, the value range from 93.0 -100% and 89.2 -100% 
respectively. Looking at the values, we can say that the precision and recall values are a little bit 
high with low variations (0.2365 and 0.2134 standards deviation). 

 
(a)           (b) 

Figure 3: Precision and recall values for the different classification process 
For the LDM, the precision and recall values range from 93 - 100 and 92.3 -100% respectively, 

while for LDM-Plus it ranges from 94.7 - 100% and 94.4 - 100% respectively. Just like the case of 
DTM and DTM-Plus classifiers, the standard deviation in this case is also low, 0.213 and 0.1165 for 
LDM and LDM-Plus respectively. Therefore, we can confirm that the precision and recall values of 
the two trained classifiers are relatively good as all the values are close to or equal to 100%, and the 
variation is low. We can also observe from the two charts in figure 3 that all the classifiers were 
able to predict and recall firm soil with 100% accuracy, this can be attributed to the distinct nature 
of its signal. Comparing DTM and DTM-Plus, it can be seen that the total accuracy of the classifier 
increased from 92.55 - 95.74% when PCA was applied to the data; while for LDM and LDM-Plus, 
the total accuracy increased only a little value from 97.74 - 98.22%. 

As shown in figure 4, the total accuracy of LDM was 5.32% higher than DTM, and that of LDM-
Plus was 2.48% higher than DTM-Plus, this shows that discrimination analysis performed better 
than the decision tree. The differences in the classification accuracy of the four methods were 
statistically compared using student t-test at 5% confidence level (table 2). Except for DTM versus 
LDM combination, the rest of the comparison returns a zero null hypothesis, indicating that there is 
no significant difference in the accuracy of the classification process. 

 

Figure 4: Total classification accuracy for each of the four methods 
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Table 2: T-test for LDA and DT performance comparison 
Combinations Null 

Hypothesis 
(h) 

Probability 
(p) 

DTM versus 
DTM-Plus 

0 1.96E-11 

LDM versus 
LDM-Plus 

0 0.0659 

DTM versus 
LDM 

1 1.96E-11 

DTM-Plus 
versus LDM-
Plus 

0 0.0769 

4. Conclusion 
Algorithms that can classify terrains which are commonly found in agricultural environments has 

been developed, and the performance of the algorithms was evaluated. To collect the experimental 
data, an instrumented autonomous agricultural tractor platform was used and a speed range of 0.8 - 
1.0 m/s was maintained during the experiment. Classification accuracy of up to 98% was obtained 
with LDM and DTM respectively. Transforming the data using FFT improves accuracy as well as 
the speed of the algorithms. Finally, it was found that PCA doesn't statistically improve the 
classification accuracy significantly. 
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